Use and misuse of trait imputation in ecology: the problem of using out‐of‐context imputed values

dc.contributor.authorGorné, Lucas Damián
dc.contributor.authorAguirre-Gutiérrez, Jesús
dc.contributor.authorSouza, Fernanda C.
dc.contributor.authorSwenson, Nathan G.
dc.contributor.authorKraft, Nathan Jared Boardman
dc.contributor.authorMarimon, Beatriz Schwantes
dc.contributor.authorBaker, Timothy R.
dc.contributor.authorFlores Llampazo, Gerardo Rafael
dc.contributor.authorMalhi, Yadvinder
dc.contributor.authorMarimon-Junior, Ben Hur
dc.date.accessioned2025-05-27T17:48:48Z
dc.date.available2025-05-27T17:48:48Z
dc.date.issued2024-12-18
dc.description.abstractDespite the progress in the measurement and accessibility of plant trait information, acquiring sufficiently complete data from enough species to answer broad-scale questions in plant functional ecology and biogeography remains challenging. A common way to overcome this challenge is by imputation, or ‘gap-filling’ of trait values. This has proven appropriate when focusing on the overall patterns emerging from the database being imputed. However, some applications force the imputation procedure out of its original scope, using imputed values independently from the imputation context, and specific trait values for a given species are used as input for computing new variables. We tested the performance of three widely used imputation methods (Bayesian hierarchical probabilistic matrix factorization, multiple imputation by chained equations with predictive mean matching, and Rphylopars) on a database of tropical tree and shrub traits. By applying a leave-one-out procedure, we assessed the accuracy and precision of the imputed values and found that out-of-context use of imputed values may bias the estimation of different variables. We also found that low redundancy (i.e. low predictability of a new value on the basis of existing values) in the dataset, not uncommon for empirical datasets, is likely the main cause of low accuracy and precision in the imputed values. We therefore suggest the use of a leave-one-out procedure to test the quality of the imputed values before any out-of-context application of the imputed values, and make practical recommendations to avoid the misuse of imputation procedures. Furthermore, we recommend not publishing gap-filled datasets, publishing instead only the empirical data, together with the imputation method applied and the corresponding script to reproduce the imputation. This will help avoid the spread of imputed data, whose accuracy, precision, and source are difficult to assess and track, into the public domain.
dc.description.peer-reviewRevisión por pares
dc.formatapplication/pdfen
dc.identifier.citationGorné, L. D., Aguirre-Gutiérrez, J., Souza, F. C., Swenson, N. G., Kraft, N. J. B., Marimon, B. S., Baker, T. R., Ferreira de Lima, R. A., Vilanova, E., Álvarez-Dávila, E., Monteagudo Mendoza, A., Flores Llampazo, G. R., dos Santos, R. M., Boenisch, G., Araujo-Murakami, A., Rivas-Torres, G., Ramírez-Angulo, H., Prestes, N. C. dos S., Morandi, P. S., Ribeiro, S. C., da Cruz, W. J. A., Disney, M., Di Fiore, A., Marimon-Junior, B. H., Feldpausch, T. R., Malhi, Y., Phillips, O. L., Galbraith, D., & Díaz, S. (2025). Use and misuse of trait imputation in ecology: the problem of using out‐of‐context imputed values. Ecography, e07520. https://doi.org/10.1111/ecog.07520
dc.identifier.doien
dc.identifier.issn09067590
dc.identifier.journalen
dc.identifier.uriapi.repositorio.iiap.gob.pe/handle/IIAP/820
dc.language.isoen
dc.publisherJohn Wiley & Sons Ltd
dc.relation.urien
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en
dc.sourceRepositorio Institucional - IIAPen
dc.sourceInstituto de Investigaciones de la Amazonía Peruanaen
dc.subjectBHPMF
dc.subjectCompletamiento de datos
dc.subjectRasgos funcionales de plantas
dc.subjectMétodos estadísticos
dc.subjectMatriz dispersa
dc.subjectEcología vegetal
dc.subjectPrecisión y exactitud
dc.titleUse and misuse of trait imputation in ecology: the problem of using out‐of‐context imputed values
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Gorné_articulo_2025_compressed.pdf
Size:
464.92 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
568 B
Format:
Item-specific license agreed upon to submission
Description: